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Applications of Ridge Regression
in Forestry

B. BRUCE BARE
Davip W. HANN

ARSTRACT. Describes the use of ridge regression for dealing with multicollinearity in multiple
linear regression. Ridge regression is reviewed and three criteria for selecting the **best™ ridge
estimator—ridge trace, variance inflation factor, and determinant of the correlation matrix—are
discussed. The first application demonstrates the use of ridge regression for selecting independent
variables during the development of a ponderosa pine basal area growth model. This use of ridge
regression produced a meaningful predictive model with interpretable coefficients. The second
application uses ridge regression to develop a descriptive model for estimating bare land values
in the Douglas-fir region. The objective was to produce precise and stable estimates of model
parameters and not to predict the dependent variable. The resuiting bare land value estimates
fall in the range of values produced by other techniques. FOREST Sci. 27:339-348.

ADDITIONAL KEY WORDS. Biased estimators, multiple linear regression, land valuation, multi-
collinearity.

CONSIDERABLE ATTENTION has focused on the use of biased estimation proce-
dures during the 1970’s. Much of this is due to the pioneering work of Hoerl and
Kennard (1970a,b) who introduced ridge regression (RR) as a biased estimation
procedure which avoids most of the pitfalls of ordinary least squares (OLS) in
the presence of multicollinearity. Other biased estimation techniques recently
introduced include principal components regression, James-Stein estimation,
fractional rank, and generalized ridge regression (Marquardt 1970, Hocking 1976,
Hocking and others 1976, Andrews 1974, Webster and others 1974, Vinod 1978,
Hemmerle and Brantle 1978, Draper and Van Nostrand 1979, Marquardt and
Snee 1975). Partly because of its relationship to OLS, RR has become one of the
most common biased estimation techniques.

EFFECTS OF MULTICOLLINEARITY

One of the basic assumptions of OLS is that perfect correlation between a linear
combination of one or more independent variables does not exist. If partial cor-
relation exists then the regression is said to contain multicollinearity between the
independent variables. Problems can arise depending upon the degree of multi-
collinearity that the regression model exhibits (Kmenta 1971).

While a model with a high degree of multicollinearity still provides unbiased
estimates of the model parameters, the adverse effect of high multicollinearity is
the production of very imprecise estimates of the regression coefficients (Kmenta
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1971). This impreciseness can cause some of the regression coefficients to be of
the wrong sign from what is expected (Hoerl and Kennard 1970a,b; Brown and
Beattie 1975). Further problems which result from multicollinearity are regression
coefficients which change drastically when a new independent variable is added
(or deleted) or which are sensitive to the addition (or deletion) of new data points
(Chatterjee and Price 1977).

Concerns over the degree of multicollinearity are important whether the regres-
sion equation is to be used for purposes of prediction or for descriptive (structural)
model building. In developing a predictive model, the primary objective is to
select those variables which lead to the minimization of mean square error of
prediction (Chatterjee and Price 1977). However, variablcs considered for selec-
tion should be based on theoretical grounds. A descriptive model is used to clarify
or describe the nature of complex interactions present in the system being mod-
eled. The primary objective is to select as few variables as possible which explain
the largest amount of variation (Chatterjee and Price 1977). Generally a descrip-
tive model requires a solid theoretical foundation which explains the behavior of
the system under study. In a descriptive model, multicollinearity is a concern
because interpretation of the regression coefficients is desired. Multicollinearity
is a concern in a predictive model because future prediction errors can occur
unless relationships present in the set of collinear data used for estimating the
regression coefficients remain fixed in future sets of data. '

Multicollinearity can also seriously affect the selection of variables in a step-
wise regression analysis (Hocking 1976). This is a result of insignificant r-ratios
on individual regression coefficients brought about by inflated variances of the
coefficients. Thus, many relevant variables can be omitted from a stepwise regres-
sion equation and problems with model specification can arise.

RIDGE REGRESSION . v

RR sacrifices unbiasedness to obtain parameter estimates that, when compared
to their unbiased OLS counterparts, have a smaller mean square error of the
parameter estimates. In terms of solving for the standardized regression coeffi-
cients, the method consists of adding a small constant value, K, to the diagonal
elements of the correlation matrix and then solving in the usual manner for the
regression coefficients. When K is zero, OLS estimates result. While K can be
any positive value, it usually lies between zero and one. Also, the larger the value
of K, the larger the bias.

When using RR there are two persistent problems. First, if the true least
squares population parameters are unknown, the amount of bias introduced is
unknown. Hoerl and Kennard (1970a,b) have shown that there is a value of Kk >
0 such that the mean square error of the ridge estimator is less than the mean
square error of the OLS estimator.

The second problem arises when determining the ‘‘best’’ value of K for a
particular problem. There have been numerous methods proposed for determining
this value. One common technique, first proposed by Hoerl and Kennard
(1970a,b), is the ridge trace. This is a plot of all standardized regression coeffi-
cients over a range of K values. Hoerl and Kennard (1970a) suggest four criteria
to consider when deciding upon a value of K from the ridge trace: (1) at a certain
value of K, the ridge trace stabilizes, (2) coefficients will not have unreasonable
absolute values in terms of a priori knowledge, (3) coefficients with theoretically
improper signs at K = 0 will have proper signs, and (4) the residual sum, of
squares will not be significantly inflated. Although these guidelines are intuitively
appealing, there is a considerable amount of subjectivity involved in their use in
actual situations.

340 / FOREST SCIENCE




Another method is the maximum variance inflation factor (VIF) criterion pro-
posed by Marquardt (1970). VIF’s are the diagonal elements of the inverse of the
correlation (standardized) matrix. In- OLS the precision of each coefficient is
measured by its variance which is proportional to o?, the variance of the error
term. The VIF is the constant of proportionality (Chatterjee and Price 1977).
Marquardt (1970) proposes a K value such that the maximum VIF is between ten
and one, and closer to one if possible. Under perfectly orthogonal conditions, all
VIF’s are equal to one whereas under perfectly collinear conditions one or more
of the VIF’s tend toward infinity.

There are two advantages to the maximum VIF approach. First, the method
is more objective than the ridge trace approach. Second, the resulting K value
is nonstochastic (Obenchain 1975). This property is required if the equations for
the expectation and covariance of the ridge estimators, developed by Hoerl and
Kennard (1970a), are to remain valid.

A third criterion to use when selecting K is the determinant of the correlation
matrix (Farrar and Glauber 1967). The determinant provides a measure of mul-
ticollinearity being close to zero when the degree of multicollinearity is high and
close to one when the degree of multicollinearity is low. Thus, to provide addi-
tional insight, the determinant is calculated for each K value. Under conditions
that the independent variables are normally distributed, Bartlett’s statistic can be
used to test the degree of multicollinearity as indicated by the determinant (Bart-
lett 1950, Haitovsky 1969, Farrar and Glauber 1967).

Other approaches for selecting a K value include those of Hoerl and Kennard
(1970a, 1976), Hemmerle (1975), Hoerl and others (1975), and Mallows (1973).
After reviewing these proposals, Mitchell and Hann (1979) conclude that the most
promising method for selecting K involves the use of Marquardt’s (1970) VIF.

RIDGE REGRESSION AS A-SCREENING TooL

The first application concerns the use of RR as a screening tool to help select
independent variables during the course of model development. In presenting this
application, our primary objective is to demonstrate the use of RR during the
development of a predictive model and not to discuss all of the background details
associated with the model. Readers.interested in these details should consult
Hann (1980). In using RR as a screening tool, variables having either small stan-
dardized regression coefficients or coefficients which are unstable as K increases
can be identified on the ridge trace. Such variables can be eliminated from further
screening runs unless other considerations warrant their retention.

This use of the ridge trace was suggested by Hoerl and Kennard (1970b). How-
ever, Marquardt and Snee (1975) caution against stabilizing a model through
elimination of independent variables because doing so can introduce model spec-
ification problems. This concern is reasonable if the exact model form is known.
However, if the exact form of the model is unknown, or if the objective of the
analysis is to develop a meaningful predictive model with interpretable regression
coefficients, the use of RR to help select independent variables appears justified.

Because an exact model form could not be prespecified, the above screening
process was applied during the development of a model to predict basal area
growth for a given diameter class for blackjack pine on the Fort Valley Experi-
mental Forest (Hann 1980). Permanent plot information dating from 1920 were
used in the analysis. The objectives of the regression analysis were to develop
a predictive model whose coefficients were interpretable without unduly increas-
ing the mean square error of residuals.

Prior to application of RR, a common model form was developed and separate
OLS estimates were obtained for each of two data sets. Data set one included
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virgin uneven-aged blackjack stands and data set two included managed uneven-
aged stands. The common equation form for each data set selected during this
phase of the analysis was

In(BAG/S) = a + b,In(D) + b,D + b,1L.BA, + bMBA, + b;UBA,
where

In(BAG/S) = Logarithm of 5-year basal area growth divided by site index
D = diameter class size

MBA, = total basal area in a given diameter class and the adjoining
larger diameter class and smaller diameter class

LBA, = total basal area in all diameter classes less than the smallest
diameter class in MBA,

UBA, = total basal area in all diameter classes greater than the largest
diameter class in MBA,

This common model form agreed with results previously reported in the liter-
ature. Further, it satisfied our a priori assumptions as dictated by silvicultural
and mensurational research. Thus, all variables were considered as appropriate
and were fixed in further regressions (Hann 1980).

During the next phase of the analysis the differences in regression coefficients
between the virgin and managed data sets were modeled as a function of time
since cutting. This was done by introducing a number of new independent vari-
ables, which were products of the original, fixed set of independent variables
from the common model form plus three sigmoidal transforms of time since cut-
ting. The three sigmoidal transforms of time since cutting were of the form: A =
a; + b;EXP(c;T") where T represents time since cutting. These sigmoidal equa-
tions were picked from the set of MATCH-A-CURVE sigmoidal models (Jensen
and Homeyer 1970) to represent a range in sigmoidal forms. Therefore, the equa-
tions and parameters were prespecified in this analysis. A sigmoidal transform of
time since cutting was used instead of a linear transform because the effect of
cutting was expected to be asymptotic over the time interval considered. The
new ‘‘time since cutting” independent variables selected during this phase of the
analysis were: A, D, A, In(D), A;- MBA,, A,-UBA,, and A,.

With introduction of the new independent variables involving time since cut-
ting, a high degree of multicollinearity was observed. TO examine the severity of
this, a ridge trace involving the new and original, fixed independent variables was
prepared (Fig. 1). An examination of this ridge trace indicated that all of the
variables being screened (except A;- MBA, whose standardized regression coef-
ficient was almost zero) were unstable. The instability between D and In(D) was
expected, but was acceptable because the two variables were necessary to pro-
vide the desired effect over diameter class size. The problem that faced us, there-
fore, was which of the new variables to eliminate to both (1) minimize multicol-
linearity and (2) to do so while not significantly increasing the mean square error
of prediction.! To do this, we eliminated the weakest predictor (A,- MBA,) and
then examined the ridge trace of the resulting model to see if acceptable stability
resulted. This process was repeated until we obtained a satisfactory compromise
to our dual objective. The order of elimination was (1) A;- MBA,, (2) A,-UBA,,
and (3) A;-D.

The ridge trace of the resulting final model is shown in Figure 2. As expected,

! For the large sample size involved in this problem the parameter estimates which minimize the
mean square. error of residuals also closely approximate minimization of the mean square error of
prediction (Neter and Wasserman 1974).
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FiGURE 1. Ridge trace for blackjack pine before elimination of variables.

the system appears much more stable in this ridge trace. To verify the gain in
stability for the OLS estimators we computed the maximum VIF for the original
and final models. The reduction of the maximum VIF for these two models was

from 260.9 to 23.02. This gain was obtained
mean square error of residuals from 1.2679 to

at the small cost of increasing the
1.2746. We could have reduced the
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FIGURE 2. Ridge trace for blackjack pine after elimination of variables.
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maximum VIF even further if RR estimators were used in place of their OLS
counterparts. However, this was not done because our primary objective was to
select variables for the final model and not to obtain precise estimates of the
regression coefficients. '
Our first example has shown how RR can be used to aid in the development
of a predictive model. Admittedly, the use of the ridge trace introduces an element
of subjectiveness. However, we believe that this is not necessarily objectionable
nor often unavoidable in developing a regression model. During the model build-
ing process trade-offs must be weighed between a priori considerations of model
form, the explanatory power of the model, the number of independent variables
and the expense of measuring them. In this example our use of the ridge trace
aided us in finding a meaningful model with stable and interpretable coefficients.

RIDGE REGRESSION AS A VALUATION TooL

Our second application demonstrates a different use of RR. In this case we work
with a previously specified model and use RR to estimate a set of biased regres-
sion coefficients which possess small standard errors and appear stable when
plotted over increasing values of K. This is important because in this application
our primary objective is to interpret the regression coefficients. Thus, our objec-
tive is not to develop a prediction equation but to estimate the parameters of a
previously specified model.

Bare forest land in western Oregon and Washington is currently subject to an
annual ad valorem tax where the value is based on *‘current forest use’” and not
“‘highest and best use.”” An administering agency in each state is responsible for
determining the bare land value for different site, location, and topographic
classes. The data for the analysis are taken from actual sales of forest land.
Although the objective of the valuation analysis is to estimate the true and fair
value of bare forest land, most of the market evidence collected by the two
agencies involves mature and immature timber value elements in addition to the
land itself. Thus, the problem becomes one of allocating the gross sales price of
a property to each of the separate value elements consisting of land, immature
trees, and merchantable timber. It is analogous to determining the price of each
item in a grocery basket when only the total sales price and the number of like
items in the basket are known. _

Instead of predicting the sales price of bare forest land as a function of site
quality, location, and topography, we must estimate the per acre contribution of
each value element present on a sale so that the total sales price is properly
allocated. Site quality, location, and topography are used as determinants of this
distribution but are not considered as separate value elements. The coefficient on
the bare land value is of primary importance in this application.

Information collected for each valid forest land sale includes: (1) gross sales
price observed in the market, (2) average site index, (3) total number of forest
land acres, (4) number of acres of bare forest land, (5) number of acres of land
stocked with immature conifer trees, (6) number of acres of land covered with
brush, and (7) the volume of mature timber on the parcel.

Based on the data collected by the two administering agencies the following
model is proposed:

GSP, e Bl[f(S)TAI] + BZCONI + B_-;BR,' + B4VOL, + EL'

where

GSP; = Gross sales price of i forest land sale composed of bare land,
immature conifer, brush and mature timber values.
TA; = total number of forest acres on ith sale.
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TABLE 1. Weighted regression results of land valuation model (through origin).

Least squares Ridge (k = 0.09)
Coeftfi-
cient Estimate Standard error Estimate Standard error
B 0.87407 0.2456 0.97396 0.1204
B. 319.03 60.8685 297.84 36.7988
Bs —134.32 165.4315 —75.75 130.1441
B 192.00 14.5496 170.53 10.2135
R? (Uncorrected for mean) = 0.92
R? (Corrected for mean and R? (Corrected for mean and
degrees of freedom) = 0.85 degrees of freedom) = 0.84
MSE of residuals = 1.8426* 108 MSE of residuals = 1.8985*108
Max VIF = 7.8291 Max VIF = 1.882
Determinant of correlation Determinant of correlation
matrix = 0.0853 matrix = 0.2439
CON; = number of acres of immature conifer on /" sale.
BR; = number of acres of brush on it sale.
VOL,; = thousands of board feet (MBF) of mature timber on /" sale.
E; = error term.

B: = per acre value of immature conifer exclusive of land.
By = per acre value of brush exclusive of land.
B4 = per MBF value of mature timber.

The f(S) term in the model quantifies the relationship of volume (or value)
across different site classes. We have used two functional forms for this purpose:
maximum mean annual cubic foot increment (MAI) and maximum soil expecta-
tion value. Both functions facilitate the derivation of a bare land value which is
a function of site index. In this paper we present results only for the maximum
MALI case. The parameter 8, represents the value of bare land per unit of MAI
for a given site class. The function used is

Maximum MAI (CF) = (0.244 §1:33

where S represents the 100-year base Douglas-fir site index. This function was
derived from the Douglas-fir Managed Yield Simulator (Bruce and others 1977)
using the optimization model proposed by Brodie and others (1978).

Previous experience with the model revealed that the variance of the error term
increased with increasing parcel size. Thus, weighted least-squares was required
to stabilize the variance. In the following weighting function:

Wi = I/TA,’C,

¢ was estimated to be 1.44 by the procedure described by Hann and McKinney
(1975). A plot of residuals confirmed that this weighting function stabilized the
variance. It further revealed that the model was correctly specified.

Using the above model, a weighted least-squares regression (through the origin)
was performed on 123 forest land sales taken from the Douglas-fir zone. The
results shown in Table 1 indicate that multicollinearity may be a problem because
the determinant of the correlation matrix is not significantly different from zero
at the 0.01 level of significance. While the maximum VIF is below Marquardt's
(1970) critical value of ten, it is still large enough to cause some concern.
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To test the stability of the coefficients a weighted RR analysis was run. The
ridge trace from this run is displayed in Figure 3. Although the regression coef-
ficients are relatively stable it appears that a K value of approximately 0.10 would
be appropriate. To help make the final decision the maximum and minimum VIF’s
for a range of K values were computed (Fig. 4). Because OLS VIF's range
between one and infinity, we do not wish to drive the RR VIF below one during
the ridge analysis. From Figure 4 the minimum VIF drops below one when X
increases beyond 0.09. Thus, a K value of 0.09 was selected.

The weighted RR results for K = 0.09 are shown in Table 1. The determinant
of 0.24 is new significantly different from zero at the 0.01 level of significance.
Furthermore, the mean square error of residuals has only increased 3 percent.

As expected, the estimated per acre value of brush is negative (8-75.75/A).
However, the large degree of variability associated with this estimate results in
a near zero standardized regression estimate (Fig. 3). Two things contributing to
this are (1) few sales include brush covered acres and (2) a high degree of vari-
ability in the condition and estimated cost of treating the brush exists in the
market. Both factors result in a high degree of variability in the estimate of S,.
However, this variable was retained in.the model because our objective is to
allocate the gross sales price across the value elements present on each sale.
Thus, the model would be misspecified if the variable was omitted.

An important result of the ridge analysis is the reduction in the standard error
of the estimate of Bi. As shown in Table 1, the standard error of the ridged
estimate of B; is about half the size of the weighted least-squares estimate. Ac-
companying this compaction of the distribution of error has been an increase in
the ridge estimate of B, of about 11 percent. Unfortunately, no way exists to
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TABLE 2. Bare land value estimates produced by weighted ridge regression
model.

Site index (100 years) 200 170 140 110 85
Bare land value ($/A) 266 215 166 121 86

estimate the amount of expected bias unless the true population parameters are
known. Brown and Beattie (1975) report results of simulation studies which in-
dicate that the expected bias will be relatively small if (1) the explanatory vari-
ables are positively correlated, (2) the true 3 values have the same sign, and (3)
the B's are about equal in magnitude. Conditions one and three were satisfied,
but B;, the per acre value of brush, was of opposite sign than the other 8's.
However, since f3; is stable and close to zero, we believe that the amount of bias
introduced into the analysis is relatively small. Supporting this conclusion is the
small value of K needed to stabilize all regression coefficients.

INTERPRETATION OF RESULTS

The main objective of the valuation problem discussed above was to estimate the
per acre value of bare forest land. From the RR results shown in Table 1, a
schedule of bare land values can be developed. These values, shown in Table 2,
are obtained by multiplying the estimate of 8, by AS). The resulting bare land
values reflect average prices being paid for bare forest land in the Douglas-fir
zone as of 1977.

The establishment of bare forest land values has been the subject of two recent
court cases in Oregon and Washington. Consequently, considerable controversy
surrounds the various methods which have been used for this purpose. Results
produced by these methods have ranged from $65 to $240 per acre for site class
140. Most of these differences are the result of differing valuation techniques and/
or assumptions. We are hopeful that the approach discussed in this paper will
shed additional light on this subject and lead to an equitable resolution of the
conflict.
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